
Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 1 -

Lecture 3

Linear Data Structures:

Arrays, Array Lists, Stacks, Queues and Linked Lists

Chapters 3.1-3.3 , 5.1-5.2, 6.1

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 2 -

Core Collection Interfaces

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 3 -

The Java Collections Framework

Iterable

Collection

Abstract

Collection
Queue

List

Abstract

Queue

Priority

Queue Array

List

Abstract

List

Vector

Stack

Linked

List

Abstract

Sequential
List

Interface

Abstract Class

Class

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 4 -

Arrays

Chapter 3.1

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 5 -

Arrays

• Array: a sequence of indexed components with

the following properties:

– array size is fixed at the time of array’s construction

• int[] numbers = new int [10];

– array elements are placed contiguously in memory

• address of any element can be calculated directly as its offset

from the beginning of the array

– consequently, array components can be efficiently inspected or

updated in O(1) time, using their indices

• randomNumber = numbers[5];

• numbers[2] = 100;

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 6 -

Arrays in Java (java.util.Arrays)

• For an array of length n, the index bounds are 0 to n-1.

• Java arrays are homogeneous

– all array components must be of the same (object or primitive) type.

– but, an array of an object type can contain objects of any respective subtype

• An array is itself an object.

– it is allocated dynamically by means of new

– it is automatically deallocated when no longer referred to

• When an array is first created, all values are automatically initialized with

– 0, for an array of int[] or double[] type

– false, for a boolean[] array

– null, for an array of objects

• Example [common error –uninitialized arrays]

int[] numbers;

numbers[2] = 100;

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 7 -

Arrays in Java

• The length of any array object can be accessed through its

instance variable ‘length’.

– the cells of an array A are numbered: 0, 1, .., A.length-1

• ArrayIndexOutOfBoundsException

– thrown at an attempt to index into array A using a number larger than

A.length-1.

– helps Java avoid ‘buffer overflow attacks’

• Example [declaring, defining and determining the size of

an array]

int[] A={12, 24, 37, 53, 67};

for (int i=0; i < A.length; i++) {

…}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 8 -

Buffer Overflows

Mon, 09 Aug 2004 17:24:19 GMT

…a buffer overflow exploit is one in which someone sends too much data to a program

(such as a web server application), sending far more data than the program would

expect, in order to force arbitrary data into a storage area (a "buffer") so the amount of

data forced into the buffer goes beyond the expected limits, causing the data to overflow

the buffer and makes it possible for that data to be executed as arbitrary program code.

Since the attacker forces code of his choosing into the execution stream, he now 0wns

your box, because as the saying goes, if I can run code on your machine - especially if

it's a Windows machine where there is not much protection - I can pretty much do

anything I please there.

Windows Buffer Overflow Protection Programs: Not Much

<"Paul Robinson" <postmaster@paul.washington.dc.us>>

Tue, 10 Aug 2004 15:26:44 GMT An 9 Aug 2004

…there is a bug in AOL Instant Messenger allowing an attacker to send a message

that can cause a buffer overflow and possibly execute code on the attacked

machine. Apparently this will only occur if the attacker sends a url - like the one in this

message - as a hyperlink and the victim clicks on it, which makes the probability of attack

much lower than a "standard buffer overflow attack" upon a program.

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 9 -

Arrays in Java

• Since an array is an object, the name of the array is actually a

reference (pointer) to the place in memory where the array is stored.

– reference to an object holds the address of the actual object

• Example [arrays as objects]

int[] A={12, 24, 37, 53, 67};

int[] B=A;

B[3]=5;

• Example [cloning an array]

int[] A={12, 24, 37, 53, 67};

int[] B=A.clone();

B[3]=5;

12 24 37 53 67

12 24 37 5 67

12 24 37 53 67

12 24 37 53 67

12 24 37 53 67

12 24 37 5 67

A

B

A

B

A

B

A

B

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 10 -

Example

Example [2D array in Java = array of arrays]

int[][] nums = new int[5][4];

int[][] nums;

nums = new int[5][];

for (int i=0; i<5; i++) {

 nums[i] = new int[4];

}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 11 -

Example

Example [2D array of objects in Java = an array of arrays of references]

Square[][] board = new Square[2][3];

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 12 -

Arrays in Java

• Useful Built-In Methods in Java.util.Arrays

– equals(A,B)

• returns true if A and B have an equal number of elements and every

corresponding pair of elements in the two arrays are equal

– fill(A,x)

• store element x into every cell of array A

– sort(A)

• sort the array A in the natural ordering of its elements

– binarySearch([int] A, int key)

• search the specified array of ints for the specified value using the

binary search algorithm

The Java.util.Arrays Class

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 13 -

Example

What is printed?

int[] A={12, 24, 37, 53, 67};

int[] B=A.clone();

if (A==B) System.out.println(“ Superman ”);

if (A.equals(B)) System.out.println(“ Snow White ”);

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 14 -

Limitations of Arrays

• Static data structure

– size must be fixed at the time the program creates the array

– once set, array size cannot be changed

– if number of entered items > declared array size out of memory

• fix 1: use array size > number of expected items waste of memory

• fix 2: increase array size to fit the number of items extra time

• Insertion / deletion in an array is time consuming

– all the elements following the inserted element must be shifted appropriately

• Example [time complexity of “growing”an array]

if (numberOfItems > numbers.length) {

 int[] newNumbers = new int[2*numbers.length];

 System.arraycopy(numbers, 0, newNumbers, 0, numbers.length);

 numbers = newNumbers;

}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 15 -

Array Lists

Chapter 6.1

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 16 -

The Array List ADT (§6.1)

• The Array List ADT extends the notion of array by storing
a sequence of arbitrary objects

• An element can be accessed, inserted or removed by
specifying its rank (number of elements preceding it)

• An exception is thrown if an incorrect rank is specified
(e.g., a negative rank)

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 17 -

The Array List ADT

public interface IndexList<E> {

/** Returns the number of elements in this list */

public int size();

/** Returns whether the list is empty. */

public boolean isEmpty();

/** Inserts an element e to be at index I, shifting all elements after this. */

public void add(int I, E e) throws IndexOutOfBoundsException;

/** Returns the element at index I, without removing it. */

public E get(int i) throws IndexOutOfBoundsException;

/** Removes and returns the element at index I, shifting the elements after this. */

public E remove(int i) throws IndexOutOfBoundsException;

/** Replaces the element at index I with e, returning the previous element at i. */

public E set(int I, E e) throws IndexOutOfBoundsException;

}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 18 -

Applications of Array Lists

• Direct applications

– Sorted collection of objects (elementary database)

• Indirect applications

– Auxiliary data structure for algorithms

– Component of other data structures

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 19 -

A Simple Array-based Implementation

• Use an array V of size N

• A variable n keeps track of the size of the array list
(number of elements stored)

• Operation get(r) is implemented in O(1) time by
returning V[r]

V

0 1 2 n r

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 20 -

Insertion

• In operation add(o, r), we need to make room for
the new element by shifting forward the n r
elements V[r], …, V[n 1]

• In the worst case (r = 0), this takes O(n) time

V

0 1 2 n r

V

0 1 2 n r

V

0 1 2 n

o

r

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 21 -

Deletion

• In operation remove(r), we need to fill the hole left by
the removed element by shifting backward the n r
1 elements V[r + 1], …, V[n 1]

• In the worst case (r = 0), this takes O(n) time

V

0 1 2 n r

V

0 1 2 n

o

r

V

0 1 2 n r

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 22 -

Performance

• In the array based implementation

– The space used by the data structure is O(n)

– size, isEmpty, get and set run in O(1) time

– add and remove run in O(n) time

• In an add operation, when the array is full,
instead of throwing an exception, we could
replace the array with a larger one.

• In fact java.util.ArrayList implements this
ADT using extendable arrays that do just
this.

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 23 -

Implementing Array Lists using Extendable Arrays

• In an add operation, when the array is full, instead of
throwing an exception, we can replace the array with a
larger one

• How large should the new array be?

– incremental strategy: increase the size by a constant c

– doubling strategy: double the size

Algorithm add(o)

 if size(S) = N

 then

 A new array of size ???

 for i 0 to N-1 do

 A[i] S[i]

 S A

 size(S) size(S) + 1

 S[N] o

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 24 -

Comparison of the Strategies

• We compare the incremental strategy and the doubling

strategy by analyzing the total time T(n) needed to

perform a series of n add operations

• We simplify the analysis by assuming add(o)

operations that append the object to the end of the list.

• We assume that we start with an empty array list

represented by an array of size 1

• The amortized time of an add(o) operation is the

average time taken over the series of operations, i.e.,
T(n)/n

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 25 -

Incremental Strategy Analysis

• We replace the array k = n/c times

• The total time T(n) of a series of n add(o)
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

• Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

• The amortized time of an add(o) operation is
O(n)

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 26 -

Doubling Strategy Analysis

• We replace the array k = log2 n times

• The total time T(n) of a series of n add(o)
operations is proportional to

 n + 1 + 2 + 4 + 8 + …+ 2k = n + 2k + 1 1 = 2n 1

• Thus T(n) is O(n)

• The amortized time of an add operation is
O(1)!

geometric series

1

2

1

4

8

Recall: r
i

i=0

n

=
1 r

n+1

1 r

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 27 -

Stacks

Chapter 5.1

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 28 -

The Stack ADT

• The Stack ADT stores
arbitrary objects

• Insertions and deletions
follow the last-in first-out
scheme

• Think of a spring-loaded
plate dispenser

• Main stack operations:

– push(object): inserts an
element

– object pop(): removes and
returns the last inserted
element

• Auxiliary stack

operations:

– object top(): returns the

last inserted element

without removing it

– integer size(): returns the

number of elements

stored

– boolean isEmpty():

indicates whether no

elements are stored

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 29 -

Stack Interface in Java

• Example java
interface

public interface Stack {

 public int size();

 public boolean isEmpty();

 public Object top()

 throws EmptyStackException;

 public void push(Object o);

 public Object pop()

 throws EmptyStackException;

}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 30 -

Applications of Stacks

• Page-visited history in a Web browser

• Undo sequence in a text editor

• Chain of method calls in the Java Virtual Machine

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 31 -

Method Stack in the JVM
• The Java Virtual Machine

(JVM) keeps track of the chain
of active methods with a stack

• When a method is called, the
JVM pushes on the stack a
frame containing

– Local variables and return value

– Program counter, keeping track of
the statement being executed

• When a method ends, its frame
is popped from the stack and
control is passed to the method
on top of the stack

• Allows for recursion

main() {

 int i = 5;
 foo(i);

 }

foo(int j) {

 int k;
 k = j+1;

 bar(k);

 }

bar(int m) {

 …
 }

bar

 PC = 1

 m = 6

foo

 PC = 3

 j = 5

 k = 6

main

 PC = 2

 i = 5

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 32 -

Array-based Stack

• A simple way of
implementing the
Stack ADT uses an
array

• We add elements
from left to right

• A variable keeps
track of the index of
the top element

S

0 1 2 t

…

Algorithm size()

 return t + 1

Algorithm pop()

 if isEmpty() then

 throw EmptyStackException

 else

 t t - 1

 return S[t + 1]

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 33 -

Array-based Stack (cont.)

• The array storing the
stack elements may
become full

• A push operation will
then throw a
FullStackException

– Limitation of the array-
based implementation

– Not intrinsic to the
Stack ADT

S

0 1 2 t

…

Algorithm push(o)

 if t = S.length - 1 then

 throw FullStackException

 else

 t t + 1

 S[t] o

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 34 -

Performance and Limitations

• Performance

– Let n be the number of elements in the stack

– The space used is O(n)

– Each operation runs in time O(1)

• Limitations

– The maximum size of the stack must be defined a

priori and cannot be changed

– Trying to push a new element into a full stack

causes an implementation-specific exception

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 35 -

Example array-based stack in Java

public class ArrayStack

 implements Stack {

 // holds the stack elements
 private Object S[];

 // index to top element
 private int top = -1;

 // constructor
 public ArrayStack(int capacity) {

 S = new Object[capacity]);

 }

 public Object pop()

 throws EmptyStackException {

 if isEmpty()

 throw new EmptyStackException

 (“Empty stack: cannot pop”);

 Object temp = S[top];

 // facilitates garbage collection

 S[top] = null;

 top = top – 1;

 return temp;

 }

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 36 -

Parentheses Matching

• Each “(”, “{”, or “[” must be paired with a matching “)”, “}”,

or “[”

– correct: ()(()){([()])}

– correct: ((()(()){([()])}

– incorrect:)(()){([()])}

– incorrect: ({[])}

– incorrect: (

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 37 -

Parentheses Matching Algorithm
Algorithm ParenMatch(X,n):

Input: An array X of n tokens, each of which is either a grouping symbol, a

variable, an arithmetic operator, or a number

Output: true if and only if all the grouping symbols in X match

Let S be an empty stack

for i=0 to n-1 do

 if X[i] is an opening grouping symbol then

 S.push(X[i])

 else if X[i] is a closing grouping symbol then

 if S.isEmpty() then

 return false {nothing to match with}

 if S.pop() does not match the type of X[i] then

 return false {wrong type}

if S.isEmpty() then

 return true {every symbol matched}

else

 return false {some symbols were never matched}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 38 -

Queues

Chapters 5.2-5.3

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 39 -

The Queue ADT

• The Queue ADT stores arbitrary

objects

• Insertions and deletions follow

the first-in first-out scheme

• Insertions are at the rear of the

queue and removals are at the

front of the queue

• Main queue operations:

– enqueue(object): inserts an

element at the end of the queue

– object dequeue(): removes and

returns the element at the front

of the queue

• Auxiliary queue operations:

– object front(): returns the
element at the front without
removing it

– integer size(): returns the
number of elements stored

– boolean isEmpty(): indicates
whether no elements are
stored

• Exceptions

– Attempting the execution of
dequeue or front on an empty
queue throws an
EmptyQueueException

– Attempting to enqueue an
element on a queue that is full
can be signaled with a
FullQueueException.

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 40 -

Queue Example

Operation Output Q

enqueue(5) – (5)

enqueue(3) – (5, 3)

dequeue() 5 (3)

enqueue(7) – (3, 7)

dequeue() 3 (7)

front() 7 (7)

dequeue() 7 ()

dequeue() “error” ()

isEmpty() true ()

enqueue(9) – (9)

enqueue(7) – (9, 7)

size() 2 (9, 7)

enqueue(3) – (9, 7, 3)

enqueue(5) – (9, 7, 3, 5)

dequeue() 9 (7, 3, 5)

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 41 -

Array-Based Queue

• Use an array of size N in a circular fashion

• Two variables keep track of the front and rear

f index of the front element

r index immediately past the rear element

• Array location r is kept empty

Q

0 1 2 r f

normal configuration

Q

0 1 2 f r

wrapped-around configuration

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 42 -

Queue Operations

• We use the

modulo operator

(remainder of

division)

Algorithm size()

 return (N f + r) mod N

Algorithm isEmpty()

 return (f = r)

Q

0 1 2 r f

Q

0 1 2 f r

 Note: N f + r = (r + N) f

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 43 -

Queue Operations (cont.)

• Operation enqueue
throws an exception if
the array is full

Algorithm enqueue(o)

 if size() = N - 1 then

 throw FullQueueException

 else

 Q[r] o

 r (r + 1) mod N

Q

0 1 2 r f

Q

0 1 2 f r

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 44 -

Queue Operations (cont.)

• Operation dequeue
throws an exception
if the queue is empty

Algorithm dequeue()

 if isEmpty() then

 throw EmptyQueueException

 else

 o Q[f]

 f (f + 1) mod N

 return o

Q

0 1 2 r f

Q

0 1 2 f r

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 45 -

Queue Interface in Java

• Java interface

corresponding to

our Queue ADT

• Requires the

definition of class

EmptyQueueException

• No corresponding

built-in Java class

public interface Queue {

 public int size();

 public boolean isEmpty();

 public Object front()

 throws EmptyQueueException;

 public void enqueue(Object o);

 public Object dequeue()

 throws EmptyQueueException;

}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 46 -

Linked Lists

Chapters 3.2 – 3.3

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 47 -

Linked Lists

• By virture of their random access nature, arrays support

non-structural read/write operations (e.g., get(i), set(i))

in O(1) time.

• Unfortunately, structural operations (e.g., add(i,e)

remove(i)) take O(n) time.

• For some algorithms, structural operations may dominate

the running time.

• For such cases, linked lists may be more appropriate.

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 48 -

Singly Linked List (§ 3.2)

• A singly linked list is a
concrete data structure
consisting of a sequence
of nodes

• Each node stores

– element

– link to the next node

next

elem node

A B C D

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 49 -

Example Java Node Class for List Nodes
public class Node {

 // Instance variables:

 private Object element;

 private Node next;

 /** Creates a node with null references to
its element and next node. */

 public Node()

 {

 this(null, null);

 }

/** Creates a node with the given element
and next node. */

 public Node(Object e, Node n)

 {

 element = e;

 next = n;

 }

// Accessor methods:
 public Object getElement()
 {
 return element;
 }
 public Node getNext()
 {
 return next;
 }

// Modifier methods:
 public void setElement(Object newElem)
{
 element = newElem;
 }

public void setNext(Node newNext)
 {
 next = newNext;
 }

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 50 -

Example Java Class for Singly-Linked List

public class SLinkedList {

 // Instance variables:

 protected Node head; //head node of list

 protected Node tail; //tail node of list

 protected long size; //number of nodes in list

 /** Default constructor that creates an empty list. */

 public SLinkedList()

 {

 head = null;

 tail = null;

 size = 0;

 }

// update and search methods go here…

}

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 51 -

Inserting at the Head

1. Allocate a new node

2. Insert new element

3. Have new node point

to old head

4. Update head to point

to new node

5. If list was initially

empty, have to

update tail as well.

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 52 -

Removing at the Head

1. Update head to

point to next node

in the list

2. Allow garbage

collector to reclaim

the former first

node

3. If list is now empty,

have to update tail

as well.

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 53 -

Implementing a Stack with a Singly-Linked List

• Earlier we saw an array implementation of a stack.

• We could also implement a stack with a singly-linked list

• The top element is stored at the first node of the list

• The space used is O(n) and each operation of the Stack ADT

takes O(1) time

t

nodes

elements

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 54 -

Implementing a Queue with a Singly-Linked List

• Just as for stacks, queue implementations can be based upon

either arrays or linked lists.

• In a linked list implementation:

– The front element is stored at the first node

– The rear element is stored at the last node

• The space used is O(n) and each operation of the Queue ADT

takes O(1) time

f

r

nodes

elements

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 55 -

Running Time

• Adding at the head is O(1)

• Removing at the head is O(1)

• How about tail operations?

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 56 -

Inserting at the Tail

1. Allocate a new node

2. Update new element

3. Have new node point

to null

4. Have old last node

point to new node

5. Update tail to point to

new node

6. If list initially empty,

have to update head

as well.

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 57 -

Removing at the Tail

• Removing at the tail

of a singly linked list

is not efficient!

• There is no

constant-time way to

update the tail to

point to the previous

node

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 58 -

Doubly Linked List

• Doubly-linked lists allow more flexible list management (constant

time operations at both ends).

• Nodes store:

– element

– link to the previous node

– link to the next node

• Special trailer and header (sentinel) nodes

prev next

elem

trailer header nodes/positions

elements

node

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 59 - Lists

59

Insertion

• addAfter(v, z) inserts node z after node v in the list

A B X C

A B C

v

A B C

p

X

z

v z

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 60 - Lists

60

Insertion Algorithm

Algorithm addAfter(v, z):

 w v.getNext()

 z.setPrev(v) {link z to its predecessor}

 z.setNext(v.getNext()) {link z to its successor}

 (v.getNext()).setPrev(z) {link z’s successor back to z}

 v.setNext(z) {link v to its new successor, z}

 size size + 1

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 61 - Lists

61

Deletion

• remove(v) removes node v from the list.

A B C D

v

A B C

D

v

A B C

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 62 - Lists

62

Deletion Algorithm

Algorithm remove(v):

 u v.getPrev() {node before v}

 w v.getNext() {node after v}

 w.setPrev(u) {link out v}

 u.setNext(w)

 v.setPrev(null) {null out fields of v}

 v.setNext(null)

 size size - 1

Last Updated: 1/14/10 9:38 AM
CSE 2011

Prof. J. Elder
- 63 -

Running Time

• Insertion and Deletion of any given node takes O(1)

time.

• However, depending upon the application, finding the

insertion location or the node to delete may take longer!

